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Machine Learning-Based Shear Optimal Adhesive
Microstructures with Experimental Validation
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Bioinspired fibrillar structures are promising for a wide range of disruptive
adhesive applications. Especially micro/nanofibrillar structures on gecko toes
can have strong and controllable adhesion and shear on a wide range of
surfaces with residual-free, repeatable, self-cleaning, and other unique
features. Synthetic dry fibrillar adhesives inspired by such biological fibrils are
optimized in different aspects to increase their performance. Previous fibril
designs for shear optimization are limited by predefined standard shapes in a
narrow range primarily based on human intuition, which restricts their
maximum performance. This study combines the machine learning-based
optimization and finite-element-method-based shear mechanics simulations
to find shear-optimized fibril designs automatically. In addition, fabrication
limitations are integrated into the simulations to have more experimentally
relevant results. The computationally discovered shear-optimized structures
are fabricated, experimentally validated, and compared with the simulations.
The results show that the computed shear-optimized fibrils perform better
than the predefined standard fibril designs. This design optimization method
can be used in future real-world shear-based gripping or nonslip surface
applications, such as robotic pick-and-place grippers, climbing robots, gloves,
electronic devices, and medical and wearable devices.
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1. Introduction

Geckos have hairy micro/nanostructures
on their toes to stick to diverse surfaces.
These fibril adhesives have some branches
and hierarchical structures called setae.
Their geometry is highly complex with spat-
ula and mushroom tip endings.[1] Such
fibrillar adhesives give highly repeatable
and controlled adhesion with no resid-
ual remaining on the contact surface.[2]

These advantages come from the source
of the adhesion, which is intermolecu-
lar interactions, such as van der Waals
forces.[3,4] Such fibrillar adhesives are also
investigated for their self-cleaning,[5–8] con-
tact mechanics,[9,10] liquid repellency,[11,12]

shear,[13–15] and adhesion under different
environmental conditions.[16] These advan-
tages have inspired many studies to fabri-
cate synthetic bioinspired fibrillar adhesives
for various applications.[11,13,17] In some
cases, synthetic adhesives performed even
better than their biological counterparts on
smooth surfaces.[18,19]

Many studies have investigated bioin-
spired nondirectional vertical fibrillar
adhesives with various geometries and
materials.[1] Most studies have focused on

maximizing the adhesion of these synthetic fibrillar adhesives
using both analytical and advanced computational methods as
a function of fiber stem and tip ending shape, fiber placement,
spacing, and material properties. Mushroom/wedge-shaped,[20]

T-shaped[21–23] and 3D designed[24,25] fibrils have shown the most
enhanced adhesion. However, the maximized shear of these fib-
rils has not been investigated yet using advanced computational
methods. The fibril structures should initially have high con-
tact area and adhesion with the contact surface to obtain high
shear.[26] During shear, mushroom-shaped fibrils bend after a cer-
tain critical point and carry normal and shear stress on the tip of
the fibril’s circumference, and, as a result, the actual contact area
decreases. It causes a reduction in shear force. Therefore, the 3D
shape of the fibril stem and tip ending needs to be optimized for
maximum shear.

Machine learning methods have been implemented in
many different fields for optimizing the 3D design of struc-
tures in buildings,[27] ships,[28] aircraft,[29] antennae,[30] and
materials.[31,32] Most of these optimizations used neural networks
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or genetic algorithms. However, these approaches have signif-
icant disadvantages in requiring an extensive training data set
with more computational time. There are more time-effective al-
ternatives for machine-learning-based design optimization, such
as the Bayesian optimization. Moreover, these optimizations can
be implemented in fibril adhesive designs as in previous studies
for maximizing their adhesion.[24,25] However, no one has inves-
tigated shear-optimal 3D fibril designs using machine-learning
approaches yet.

Developing nondirectional shear optimal microstructures are
important to advance many fields and applications requiring high
shear forces, such as climbing robots, robotic grippers, and surgi-
cal robot graspers. Climbing robots need high shear capability on
their contact surfaces to avoid any possible slipping to improve
their locomotion and even make it possible to climb high-angle
inclined surfaces.[33] Otherwise, their performance will be lim-
ited to several tasks only. As another example, for robotic grip-
pers, since aimed gripping item shapes are usually uncertain in
real-life, one of the biggest challenges is holding large-curvature
objects without over-squeezing them but still being able to grip
them.[34] To solve this challenge, gripper holders should have
high-shear performance surfaces to hold the objects with much
less required squeezing pressure while grasping. Developing
high-shear performance microstructures is critical for improving
the current performance of robotic grippers, especially for frag-
ile items that cannot resist high-pressing forces. Another crucial
field that potentially benefits from developing shear-optimal mi-
crostructures is surgical robot graspers. In some medical opera-
tions, grasping a tissue is essential to be able to do the tasks with
surgical robot graspers. However, these graspers should hold the
tissue without causing any damage.[35,36] This ability is only pos-
sible by having an interfacial layer between the grasper surface
and tissue. Due to that, the high-performing shear optimal mi-
crostructures can be decorated on a grasper surface to hold the
tissue. It will also decrease the required pressing forces dramati-
cally. In the end, the operation can be conducted to decrease the
possible damage to a patient’s tissue. It will decrease the possi-
ble trauma in the operation region dramatically. In addition to
all these advantages, developing high-performance shear optimal
microstructures will not leave any residual to contact surfaces.

Previous studies used predefined limited fibril shapes to in-
vestigate their shear performance. A more general approach is
needed to reduce these limitations and explore more optimal fib-
ril shapes with higher shear performance. Therefore, we pro-
pose a machine learning-based optimization method using fi-
nite element methods (FEM)-based shear modeling to optimize
the shear of 3D fibril designs. We fabricated such 3D fibril de-
signs using two-photon polymerization (2PP) technique to vali-
date them experimentally. This method provides the advantage of
searching a vast design space relatively faster than trial-error and
other optimization methods.[37] In addition, the implemented
Bayesian optimization framework is highly data-efficient, and the
optimization framework requires 300 iteration runs for each de-
sign to find the optimal fibril design. Moreover, the Bezier-curve-
based body shape computational modeling gives high flexibility
for investigating the optimal fibril design compared to standard
predefined shapes. In each iteration, the shear results are esti-
mated with the FEM simulations, and the Bayesian optimizer
suggests another fibril design according to the FEM-estimated

results. The proposed framework saves reasonable time during
shear-optimal fibril design investigation, and it finds the optimal
shape for defined tip diameter and aspect ratio (AR) in ≈5 h in
our system. Finally, the optimal fibril shapes are experimentally
validated.

2. Results

FEM-based shear simulation and the Bayesian optimization are
the two main parts of the proposed shear optimization frame-
work (Figure 1a). FEM simulation was used for shear force esti-
mation, and the Bayesian optimization was used for investigat-
ing the optimal estimated design. In each iteration, the Bayesian
optimization suggested design parameters to evaluate the esti-
mated shear for the simulation. This process continued until the
iteration limit (300 iterations) was achieved, which gave us the
optimal fibril design (Figure S1, Supporting Information).

The FEM simulation was built in 2D for all shapes. The contact
surface was assumed as smooth and locally flat. The side profile
of the 3D fibril was modeled using a Bezier curve. Three differ-
ent ARs (1, 0.6, 0.4) and three different tip diameters (40, 60, and
80 μm) were considered to explore the fibril size effects. In ad-
dition to that 2PP-based 3D fibril fabrication limitation, such as
the minimum achievable fillet radius of 2.7 μm at the tip of the
fibrils, was integrated into the simulations.

The shear performance of a fibril was simulated with its defor-
mation using the Mooney–Rivlin hyperelastic model.[38,39] Dur-
ing the simulations, the shear force of the fibril was calculated by
integrating the shear stress on the fibril tip line. After taking the
line integral, the unit force was divided by the measured tip diam-
eter of the fibril and multiplied by the tip area of the fibril. This
way, we obtained the equivalent shear force from the 2D FEM
simulation. In the simulations, it was assumed that the fibril tip
had contact with a smooth and locally flat surface. Initially, all the
fibrils were compressed with a locally flat probe with a constant
preload pressure of ≈600 kPa. After compression, the fibril base
was moved to the right side with small step sizes to create shear
on the fibril. During measurements, first, the applied preload is
reached and waited until the end of preload duration, and then,
the shear begins. During shear measurement, there was no feed-
back mechanism to keep the applied normal pressure constant at
the same value; instead, the z-position is kept fixed throughout
experiments. During the shear, if the interfacial critical normal
stress value[40,41] was reached on any region of the fibril’s tip sur-
face, then the simulation assumed that the fibril detached from
the surface.

As an optimizer, the Bayesian optimization method was used
and connected to the FEM simulation. One of the main advan-
tages of this method was keeping the iteration number as low
as possible. This optimization method could help decrease the
number of simulation runs and increase our approach’s effi-
ciency. The fixed parameters were the minimum fillet radius due
to the fibril fabrication limitations, the fibril tip diameter, and the
fibril stem height for corresponding categories. In each iteration,
the optimization framework considered the Bezier-curve control
points as optimizable variables and suggested the optimal de-
sign (Figure 1b). Our method aimed to maximize the shear force.
Here, all of the fibril designs were directly fabricated by a 2PP
process with an elastomeric resin material (Figure 1c,d). Before
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Figure 1. Overall summary for investigating the Bayesian optimization-based shear-optimized microfibril designs. a) Optimization framework for inves-
tigating the machine learning-based (ML-based) optimal microfibril designs. b) Design parameters of a fibril for Bayesian optimization. c) Starting from
a random shape, the fibril design changes in each iteration until obtaining the maximum shear force. d) Fabrication procedure of the optimal fibrils using
two-photon lithography technique using an elastomeric resin material. e) Scanning electron microscope (SEM) image of a sample fabricated optimal
microfibril with an 80 μm tip diameter and 0.4 AR.

starting the optimization process, the essential parameters were
experimentally measured and included in the simulations, such
as the hyperelastic model parameters, the minimum fillet radius
due to fabrication limitations, and the interfacial critical normal
stress.

During shear, the interfacial stress of the optimal fibril showed
that the stress distributions were changing along the fibril tip
contact surface area (Figure 2). The normal stress distribution
of the fibril showed that the opposite side of the shear direction
of the fibril edge’s interfacial stress distribution increased during
shear. After reaching the critical interfacial normal stress, the op-
posite side of the shear direction of the fibril edge’s interfacial
stress distribution was assumed to be detached from the surface.
As a result, the detachment started from the critical interfacial
normal stress-reached part of the fibril and continued as a crack
propagation to the other end of the fibril (Figure 2a–c). During
shear, the interfacial shear stress distribution of the fibril also
changed. The shear stress values increased along the fibril inter-
face during shear. Especially, both ends of the fibril’s interfacial
stress values increased drastically (Figure 2d–f).

The optimized fibrils with various tip diameters and ARs were
found with the proposed optimization framework. The fibrils’
three different tip diameters (40, 60, and 80 μm) were optimized
for three different ARs (1, 0.6, and 0.4). All of the nine optimal
fibril designs are shown in Figure 3. For high aspect ratio (AR 1)
fibril designs, the stiffness of the fibrils was tried to be increased
by maximizing the values of the Bezier curve control points to
obtain higher shear force.

The shear performance of the fabricated optimal fibrils was
characterized by a hemispherical-smooth glass probe with a
10 mm diameter. Since the tip diameters of the fibrils were much
smaller than the smooth glass probe, flat-flat contact geometry
can be assumed between the fibrils and the contact probe dur-
ing measurements. All 40 μm tip diameter fibril designs were
printed as a tripod with three structures for measurements. The
rest of the tip diameter designs (60 and 80 μm) were fabricated
as a single structure. Standard shapes (flat-punch and wedge-
shaped mushroom fibrils) were also fabricated and considered as
a control in this study. These structures were widely known and
commonly used in the literature for high adhesion and shear.
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Figure 2. Normal and shear stress distribution under different shear strains for an 80 μm tip diameter and AR 0.4 ML-found optimal design. Normal
stress distribution a) under 10% shear strain, b) under 20% shear strain, c) on a tip-contact surface interface for four different shear strains (5%, 10%,
15%, 20%) for 80 μm tip diameter and AR 0.4 ML-found optimal design are shown, respectively. Shear stress distribution d) under 10% shear strain,
e) under 20% shear strain, f) on a tip-contact surface interface for four different shear strains (5%, 10%, 15%, 20%) for 80 μm tip diameter and AR 0.4
ML-found optimal design are shown, respectively. The dashed green rectangular area encloses the interested stress distribution line between the fibril
tip and the contact surface.

Figure 3. SEM images of the fabricated ML-found optimal elastomeric fibril structures for three different tip diameters (40, 60, and 80 μm) and three
different ARs (0.4, 0.6, and 1). The tip diameter 40, 60, and 80 μm designs are (a–c), (d–f), (g–i), respectively. The AR 0.4, 0.6, and 1 designs are (a,d,g),
(b,e,h), (c,f,i), respectively. All scale bars are 20 μm.
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Figure 4. Shear results in FEM simulations and experiments for a single fibril using a flat punch, wedge-shaped, and ML-based optimal designs.
a) The FEM simulation results show that ML-based optimal designs have better shear performance than the standard flat punch and wedge-shaped
fibril designs. b) The experimental results agree with the FEM simulation results, proving that the ML-found designs give higher shear forces than the
standard shapes in all cases.

Shear performance comparison among all possible fibril de-
signs is shown in Figure 4 with experimental and simulation re-
sults. Machine learning-based optimal fibril designs performed
better than the standard shapes in simulations and experiments
in all cases. Moreover, the predicted shear forces show agree-
ment with the experiments in all fibril designs and categories.
The results show that if the fibril’s tip diameter increases, the
fibril’s shear force also increases for a single structure. This phe-
nomenon also applies to the AR. If the AR decreases, the fibril’s
shear force increases for a single fibril. This trend is related to
the stiffness of the fibrils. If the stiffness of the fibril rises, then
its shear performance also increases. However, there should be a
limit to increasing the stiffness of the structures. If the stiffness
of the made of material of the fibrils increases, then after a cer-
tain point, the conformal contact between the fibril tips and the
contact surface worsens, which would reduce the shear perfor-
mance.

3. Conclusion

Our approach for investigating shear-optimal fibril designs with
experimental validation could compute shear-optimal fibril de-
signs accurately and efficiently. This investigation is possible by
linking the FEM shear simulation with the Bayesian optimiza-
tion method instead of designing fibrils based on human in-
tuition or analytical models. The computational machine learn-
ing approach enables us to efficiently explore a broad range of
fibril designs to maximize the shear performance. Additionally,
the Bezier-curve-based fibril body design gives significant flexi-
bility to investigate broad fibril designs. Besides the simulation
results, experimental results have validated the computed shear-
optimal fibril designs. Furthermore, the ML-found shear optimal
structures were compared with the work of other researchers in
this study. Therefore, the shapes of the other researchers (wedge
mushroom and flat punch) were also included and fabricated
with our materials and our fabrication process to compare them
fairly with the ML-based optimal structures. Otherwise, the shape
effect will not be the only factor due to the other effects of several
factors, such as material and fabrication process. Based on this
comparison, our ML-based shear optimal structure designs have

better shear performance than the literature’s proposed designs.
As a future work, fibril designs that optimize adhesion, shear,
and wetting can be studied using the given computational frame-
work. Integrated fabrication limitation in simulations makes the
FEM simulation environment more realistic than other simu-
lation approaches.[25] As a result, the computed optimal design
performances matched well with the experimental ones. These
findings are crucial for many real-world shear-dominated fibril-
lar adhesive applications in robotic grippers for pick-and-place
and object manipulation,[42] climbing or other mobile robots that
require nonslipping limbs,[43] and biomedical devices to anchor
and nonslip on surfaces.[44]

4. Experimental Section
FEM Simulations: For FEM simulations, a commercial FEM software

(COMSOL Multiphysics 5.6, COMSOL Inc.) was used. The simulations
were used to estimate the shear force of the standard and optimal fibril
designs. The fibril base was fixed on the substrate in the simulations, and
the top part of the fibril tip ending was in touch with the contact surface. At
the beginning of the simulation, the contact surface iteratively translated
and compressed the fibril on the z-axis until reaching ≈600 kPa. After that,
the fibril substrate moved on the x-axis until the tip of the fibril’s stress
reached the critical interfacial normal stress. Then, the simulation termi-
nated, and the shear force was calculated. The shear force of the fibril was
calculated by integrating the shear stress on the fibril tip line, leading to
unit force per length (N m−1). After taking the line integral, the unit force
was divided by the measured tip diameter of the fibril and multiplied by
the tip area of the fibril, giving the total shear force.

For simulations, some material characterizations have been realized
experimentally. Initially, all standard shapes were fabricated by the 2PP
method, and commercial IP-PDMS elastomeric resin was used as a ma-
terial. The SEM images were used for defining the geometrical fabrica-
tion limitation: the minimum tip edge fillet radius. For the Mooney–Rivlin
two parameters, the normal adhesion measurements were conducted. For
finding the critical normal stress values, shear characterizations were re-
alized for all standard fibrils (flat-punch pillar and wedge mushroom).[20]

The related fabrication limitations were also included in simulations for
standard fibrils. The shear measurements were matched with the shear
simulations for all standard shapes and categories (tip diameter and ARs)
by minimizing the root-mean-squared relative error to find each AR’s crit-
ical normal stress. It was found that one specific critical normal stress

Small 2023, 2304437 © 2023 The Authors. Small published by Wiley-VCH GmbH2304437 (5 of 7)

 16136829, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

ll.202304437 by U
niversitatsbibliothek Stuttgart, W

iley O
nline L

ibrary on [15/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.small-journal.com

existed for each AR. For ARs 1, 0.6, and 0.4, the critical normal stresses
were −264.0, −14.5, and 362.9 kPa, respectively. Since the experimental
results were related to the simulation results for standard shapes before
starting the exploration of the optimal designs, this approach made the
simulation results comparable with the real experiments.

The design of the fibrils included fixed and optimizable parameters. The
fixed parameters included the minimum edge fillet radius, tip diameter (for
each category), AR (for each category), Mooney–Rivlin parameters, and
critical normal stress (for each AR). The optimizable parameters included
the 4th degree of Bezier-curve control points with three Bezier-curve con-
trol points and a fibril base diameter. More than 10 000 free triangular
elements were used as meshes in each 2D simulation. Significantly, the
meshes were extremely fine toward the tip of the fibril to catch the critical
normal stress for detachment precisely.

Bayesian Optimization: The Bayesian optimization was implemented
using a prebuilt function called “bayesopt.m” on MATLAB (MATLAB
R2018a, The MathWorks, Inc.). As an acquisition function, expected im-
provement was used. The number of iterations was set to 300. The
Bayesian optimizer (implemented in MATLAB) was linked with COMSOL
FEM simulation (COMSOL Multiphysics 5.6, COMSOL Inc.) via LiveLink.
The Bayesian optimizer’s suggested design was sent to FEM simulation in
each iteration. The FEM simulation ran and calculated the estimated shear
force. Afterward, the estimated shear force was returned to the Bayesian
optimizer to decide which design point should be evaluated next. All pro-
cess took ≈5 h to find the optimal design for one specific tip diameter and
AR. This framework was implemented on a desktop computer that had
Intel Xeon CPU with 20 cores (E5-2680 v2, 2.80 GHz), 192 GB RAM, and
NVIDIA Quadro K5000 graphics card.

Fibril Fabrication: For each standard and optimal fibril design, the
computer-aided design was implemented by Solidworks, and then a stere-
olithography file (.stl) was created. The generated files were uploaded into
the Nanoscribe software (Photonic Professional GT2, Nanoscribe GmbH,
Germany). The two-photon lithography system was used in DiLL mode. In
this mode, the elastomeric resin material (IP-PDMS, Nanoscribe GmbH,
Germany) was placed between the substrate glass and the objective. As
the objective lens, 25x, 0.8 NA objective was used. After the printing of
desired fibril structures, the post-process was applied. The fabricated fib-
rils were immersed in a beaker containing isopropyl alcohol (IPA) for
15 min. Next, the samples were immersed in another beaker containing
fresh IPA for 2 min. Young’s modulus of the material was 15.3 MPa.[45,46]

For material behavior on a small scale, a T-shape fibril’s stress–strain
curve on a smooth spherical glass was used for Mooney–Rivlin’s second-
order model fitting.[47] The printed T-shape fibril’s stress–strain curve
was obtained by normal force measurements. The obtained stress–strain
curve was used for Mooney–Rivlin’s second-order model fitting, withhold-
ing the constraints according to the literature.[47] The Mooney–Rivlin pa-
rameters were obtained by minimizing the sum square error of the fit-
ting curve with estimation for fibril’s experimentally obtained stress–strain
curve using the “fmincon.m” function including the required constraints
for Mooney–Rivlin parameters in MATLAB (MATLAB R2019a, The Math-
Works, Inc.). The computed Mooney–Rivlin second-order model fitting pa-
rameters were used in all simulations. These values were C10 = 1.01e +
6 Pa and C01 = 5.96e + 5 Pa.

Shear and Adhesion Measurements: A custom-made shear-adhesion
setup was used for tangential/shear and normal force measurements.
A video camera (Grasshopper3, Point Grey Research Inc.) was mounted
on an inverted optical microscope (Axio Observer A1, Zeiss) to visualize
the measurements. For z-direction and y-direction, a computer-controlled
high-precision stage (LPS-65 2″, Physik Instrumente GmbH & Co. KG)
was attached to the microscope. Two load cells (y-axis: LSB200, 100 g,
JR S-Beam, FUTEK, and z-axis: GSO-25, Transducer Technique LLC) were
mounted on the stage in an orientation to measure the forces on the y-axis
and z-axis. The motion of the piezo stages was controlled, and a custom-
made program processed the data acquisition by a LabVIEW (National
Instruments, Austin, TX, USA). A smooth spherical glass probe with a
10 mm diameter was used as a contact surface. The load-drag tests were
done for shear. Before applying shear, the normal pressure (≈600 kPa) was
exerted on the fibril. After reaching the desired preload, 60 s of relaxation

time waited. Tangential displacement was applied for 1 mm after relax-
ation time. During the measurements, all speeds (approaching speed on
the z-axis, shear speed on the y-axis, and retraction speed on the z-axis)
were set to 5 μm s−1. Each measurement was repeated five times.
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